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An answer is given to a recent criticizm by Fock, concerning our paper ''Time in the Quantum Theory and 
the Uncertainty Relation for Time and Energy." I t is proved that Fock's criticizm is wrong, and that our 
previous conclusion that energy can be measured in an arbitrarily short period of time is valid. 

IN a recent article^ Fock has criticized one of our 
previous papers.^ In that paper we attempted to 

show that contrary to a widespread view,^ it is possible 
to measure the energy of a physical system within an 
arbitrarily short time interval. We first emphasized that 
the time in question is a dynamical variable belonging to 
the measuring apparatus and therefore commutes with 
the energy of the system. Hence no reciprocal limita
tions in the mutual definability of these quantities 
should be expected. Nevertheless, since analysis of 
apparently illustrative examples of energy measure
ments (e.g., by collision) had seemed to indicate the 
opposite, we proceeded to show that the arrangements 
considered in these examples did not exhaust the 
measuring possibilities. By analyzing the problem of 
energy measurements along the lines of von Neumann^ 
we arrived at the conclusion that measurements of 
energy in arbitrarily short intervals of time are indeed 
possible. However, as indicated by the mathematics, 
the execution of such measurements would require an 
interaction of a type different from those commonly 
considered (such as in a one-collision experiment). 
Using this information, we then described an experi
mental setup that introduces the proper interaction for 
this measurement.^ As expected, this setup permits us 
to measure the energy of the system in as short a time 
interval as we choose. 

Fock's criticism consists of two steps. He first raises 
objection to the Hamiltonian which we used in our 
mathematical considerations, namely, 

H=p,y2m+Pyy2M+yp,g{t) (1) 

[where px and m are the momentum and the mass of 
the observed particle, py and M are the corresponding 
quantities of the test body and y is its position. The 
function g{t) measures the strength of the interaction 
and differs from zero only during a short interval of 
time, when it equals a constant]. 

As Fock points out, this Hamiltonian describes an 
interaction between the particle under consideration 
and a field g which is switched on instantaneously at a 
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certain time t and is similarly switched off at a later 
time /+A^. Fock claims that we commit the logical 
error of "begging the question,'' since our procedure 
amounts to using this field as a classical entity, i.e., we 
neglect the time-energy uncertainties associated with it. 
For example, we neglect right from the outset the field 
quanta of infinite energy which are created when g is 
switched on and off instantaneously. 

While it is quite correct that such infinite uncer
tainties in the energy of the field are created, this would 
lead to no contradiction with our basic argument unless 
one assumes further (as Fock does) that such quanta 
of the field by necessity produce a corresponding 
(infinite) uncertainty in the energy of the particle itself. 
This, however, is an erroneous assumption, as will be 
shown below, and thus Fock's first argument will prove 
to be invalid. 

In his second argument Fock uses a "corrected^' g{t), 
which is switched on and off smoothly [during a time 
of the order Â  of the duration of g{t) itself]. He then 
proposes to show that with a thus modified Hamiltonian 
one arrives at conclusions opposite to ours, namely that 
the energy cannot be measured in arbitrarily short 
times. His argument is based on his calculation showing 
that the kinetic energy of the observed particle is 
changed by an amount which is uncertain to the order 
LK>_}iltd. In fact, this point was emphasized in our 
paper.^ But, as we pointed out, this uncertainty in the 
kinetic energy is produced during Xh!^ first stage of the 
measurement process; the measurement which we 
considered possessed, however, as we explained in detail 
that paper, also a second stage, during which another 
shift in the kinetic energy takes place, which exactly 
cancels the first uncertainty. Thus, when the interaction 
is over, the final kinetic energy again equals the initial 
px^/2m, and, since p^ has been measured accurately, 
we are left with no uncertainty in the energy.^ Since the 
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kinetic energy must become uncertain in the intermediate stage 
of the measurement or whether this is just a characteristic of the 
examples discussed by us. The answer is that it must be a general 
property of every kinetic energy measurement. This is connected 
with the fact that measurement of the kinetic energy is equivalent 
to measurement of velocity. Since the velocity is not a canonical 
variable, it is impossible to add an interaction term to the Hamil
tonian which is proportional to the velocity. This point as well as 
the general problem of measurement of noncanonical variables 
will be discussed more fully in a future paper written by one of 
us (Y. Aharonov), Gideon Carmi, and Aage Petersen, 
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duration of g{t) (which includes both stages of the 
measurement process) can be made arbitrarily short, 
we thus had achieved our object, of measuring the 
energy in an arbitrarily short time interval, without 
introducing any over-all change in the energy. 

We now return to Fock's first argument, although, 
as should be clear from the previous discussion, our 
basic assertion about the measurability of the energy 
in arbitrarily short times, was established by answering 
Fock's second argument alone. We emphasize again 
that the validity of Fock's first argument depends on 
the question whether or not the occurrence of uncer
tainties in the energy of the "field" g{t) by necessity also 
introduces equal uncertainties in the energy of the 
observed particle. The simple example which follows 
will show that this is not at all the case. Rather, the 
example indicates that the transfer of uncertainty to 
the particle can be arbitrarily small; the reason being 
that this transfer is governed by momentum conserva
tion (and, in general, by some suitable conservation law 
other than that of energy). Thus, there is no a priori 
argument against the use of our Hamiltonian (1). We 
will then proceed to show directly that the Hamiltonian 
(1) indeed describes a well-defined physical situation. 

As an example of an interaction process in which the 
uncertainty of the energy exchange between the con
stituents is arbitrarily small, consider a collision between 
two particles, one of which is light (mass m) and the 
other very heavy (mass M). If the light particle has an 
initial velocity V and a latitude of position A ;̂, it is 
possible to fix the time of collision to any accuracy, 
At=Ax/V, by making V arbitrarily large. (We assume 
that the uncertainty in the position of the second 
particle is of the same order as Â ,̂ but if its mass is large 
enough, its velocity may be made arbitrarily small.) To 
see that the energy exchange can be controlled to an 
arbitrary accuracy, it is enough to observe that the 
maximum energy transfer will be {mVy/2M, which 
approaches zero when M goes to infinity. Thus, it is 
clear that the interaction term in the Hamiltonian 
describing these two systems will be effectively different 
from zero for an arbitrarily short time and still the 

energy exchange will be uncertain to an amount far 
smaller than h divided by the time of interaction. Hence, 
if we would have multipHed the interaction term of this 
Hamiltonian by an explicit time-dependent function of 
the form of g(t) in (1), we would have made no essential 
change provided the period in which g{t) is different 
from zero is larger than the uncertainty in the time of 
collision. 

I t should now be clear how we can derive the Hamil
tonian (1) from a Hamiltonian which is not explicitly 
time-dependent and which therefore satisfies even 
Fock's demands. The equivalent will be 

H=—^ 
P^' . Py' 

2m 2M 2M' 
-ypxgiz), (2) 

where z, p^ and M' are the coordinate, momentum, and 
mass of an extremely heavy particle. (The z degree of 
freedom serves to introduce a dynamical time in the 
Hamiltonian.) 

If the mass of z is large enough we may, as is well 
known, approximate the z dependence of the total wave 
function by a term 5 {z—Vzt) where Vz is the velocity 
of z which may be taken as a constant equal to 1. In 
this approximation all the results derived from Hamil
tonian (2) will be exactly equivalent to those derived 
from Hamiltonian (1) [since g{z) is equal to g{t)'}. We 
thus conclude that every explicitly time-dependent 
Hamiltonian may be approached with an arbitrary 
accuracy, and that no extra consistency limitations 
can be imposed. 

In summary, both objections raised by Fock are 
untenable, and the conclusion of our previous paper, 
viz., that reproducible energy measurements can be 
performed in arbitrarily short periods of time, remains 
valid. 
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